• subvisual1
  • subvisual2
  • subvisual3
  • subvisual4
 
작성일 : 18-04-27 20:54
Energy & Env. Sci (30.06) in our lab.
 글쓴이 : supervisor
조회 : 903  
   201804_Karthi_EES_Paper_Correction1.pdf (2.7M) [6] DATE : 2018-04-27 20:54:56
***** Congratulations! Our first IF 30.06 Paper Publication*****
Two-dimensional siloxene nanosheets: Novel high-performance supercapacitor electrode materials
Karthikeyan Krishnamoorthy,a Parthiban Pazhamalai,a and Sang Jae Kim,a,b,*

Department of Mechatronics Engineering, Jeju National University, Jeju 63243,
Republic of Korea.

Silicon-based materials have attracted considerable interest for the development of energy storage devices because of their
ease of integration with existing silicon semiconductor technology. Herein, we have prepared siloxene sheets—a twodimensional
(2D) silicon material—and investigated their energy storage properties via fabrication of a symmetric
supercapacitor (SSC) device containing 0.5 M tetraethylammonium tetrafluoroborate as the electrolyte. The formation of
2D siloxene sheets functionalized with oxygen, hydrogen, and hydroxyl groups was confirmed through X-ray diffraction, Xray
photoelectron spectroscopy, high-resolution transmission electron microscopy, and laser Raman mapping analyses.
Cyclic voltammetric studies of the siloxene SSC device revealed the presence of pseudocapacitance in the siloxene sheets
that arose from an intercalation/deintercalation phenomenon. The galvanostatic charge–discharge profiles of the device
displayed sloped symmetric triangular curves with a maximum specific capacitance of 2.18 mF cm−2, high energy density of
9.82 mJ cm−2, good rate capability, and excellent cycling stability of 98% capacitance retention after 10,000 cycles. The
siloxene SSC device delivered a maximum power density of 272.5 mW cm−2, which is higher than those of other silicon- and
carbon-based SSCs, highlighting their potential for application in energy storage.