Publication

NMSL Lab

Publication

Atomically dispersed dual iron and manganese anchored nitrogen doped reduced graphene as robust cathode catalyst for direct methanol fuel cell and aluminium air battery
Author
Kousik Bhunia, Jun Ho Seok, Muthukumar Perumalsamy, Keyru Serbara Bejigo , Vijaykumar Elumalai , Sang Uck Lee, Sang-jae Kim
Journal
Nano Energy
Page
109966
Year
2024

Abstract

A noble metal-free atomically dispersed dual metal (Fe and Mn) anchored nitrogen (N)-doped reduced graphene oxide (rGO) is synthesized as a high-performance oxygen reduction reaction (ORR) electrocatalyst for alkaline direct methanol fuel cell and aluminium-air battery (AAB). The as-synthesized FeMn-NrGO catalyst exhibits a half-wave potential of 0.84 V for ORR and a low onset potential of 0.96 Vvs (RHE). The theoretical study reveals that the synergetic coupling of Mn and Fe with pyridinic and pyrrolic nitrogen weakening adsorption bond strength of the O* intermediates to the active site of the catalyst, thereby improving the for ORR performance. The synthesized Fe3Mn1-NrGO cathode catalyst assembled alkaline direct methanol fuel cell (DMFC) demonstrates a peak power density of 65 mW/cm2 extending an effective strategy to enhance the ORR kinetics of the non-noble metal-based catalyst for fuel cell application. Furthermore, the synthesized Fe3Mn1-NrGO also exhibits excellent ORR activity in 3.5 wt% NaCl solution and demonstrates a peak power density of 11.2 mW/cm2 aqueous NaCl electrolyte-based AAB system.